Product Description
As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.
Our advantage:
1. Full range of products
2. MOQ qty: 5pcs/items
3. Delivery on time
4: Warranty: 1 YEAR
5. Develope new items: FREE
Brand Name |
KOWA DRIVE SHAFT |
Item name |
OEM |
Car maker |
For all japanese/korean/european/american car |
Moq |
5pcs |
Guarantee |
12 months |
sample |
Available if have stock |
Price |
Send inquiry to get lastest price |
BOX/QTY |
1PCS/Bag 4PCS /CTNS |
For some items, we have stock, small order (+3000USD) is welcome.
The following items are some of drive shafts, If you need more information, pls contact us for ASAP.
For Japanese Car | |||
for TOYOTA | for TOYOTA | ||
43420-57170 | 43420-57180 | 43410-0W081 | 43420-0W080 |
43410-57120 | 43420-57190 | 43410-0W091 | 43420-0W090 |
43410-57130 | 43420-57120 | 43410-0W100 | 43420-0W110 |
43410-57150 | 43420-02B10 | 43410-0W110 | 43420-0W160 |
43410-06221 | 43420-02B11 | 43410-0W140 | 43420-32161 |
43410-06231 | 43420-02B60 | 43410-0W150 | 43420-33250 |
43410-06460 | 43420-02B61 | 43410-0W180 | 43420-33280 |
43410-06570 | 43420-02B62 | 43410-12410 | 43420-48090 |
43410-06580 | 43420-06221 | 43410-33280 | 43420-48091 |
43410-066-90 | 43420-06231 | 43410-33290 | 43430OK571 |
43410-06750 | 43420-06460 | 43410-33330 | 66-5245 |
43410-06780 | 43420-06490 | 43410-48070 | 66-5247 |
43410-06A40 | 43420-06500 | 43410-48071 | 43420-57150 |
43410-06A50 | 43420- 0571 0 | 43410-0W061 | 43420-0W061 |
43410-07070 | 43420-06610 | 43410-0W071 | 43420-0W071 |
for Acura | for LEXUS | ||
44305STKA00 | 66-4198 | 43410-06200 | 43410-06480 |
44305STKA01 | 66-4261 | 43410-06450 | 43410-06560 |
44305SZPA00 | 66-4262 | 66-5265 | |
44306STKA00 | 66-4270 | for MITSUBISHI | |
44306STKA01 | 66-4271 | 3815A309 | 3815A310 |
44306SZPA00 | |||
for Honda | for MAZDA | ||
44571S1571 | 44306S3VA61 | 5L8Z3A428AB | GG052550XD |
44011S1571 | 44306S3VA62 | 5L8Z3A428DA | GG052560XE |
44305S2HN50 | 44306S9VA51 | 66-2090 | GG362550XA |
44305SCVA50 | 44306S9VA71 | 6L8Z3A428A | YL8Z3A427AA |
44305SCVA51 | 44306SCVA50 | 9L8Z3A427B | YL8Z3A427BA |
44305SCVA90 | 44306SCVA51 | GG032550XD | YL8Z3A428AA |
44305SCVA91 | 44306SCVA90 | GG042550XD | YL8Z3A428BA |
44305STXA02 | 44306SCVA91 | GG042560XG | ZC32550XA |
44305SZAA01 | 44306STXA02 | ||
44306S2H951 | 44306SZAA01 | ||
44306SZAA11 | 44306SZAA01RM | ||
44306SZAA12 | 66-4213 | ||
66-4214 | |||
for Europe Car | |||
for VOLKSWAGEN | for VOLKSWAGEN | ||
4885712AD | 7B0407271B | 7E0407271G | 7LA407272C |
4885713AF | 7B0407272 | 7E0407271P | 7LA4 0571 2CX |
4881214AE | 7B0407272E | 7LA407271E | |
7B0407271A | |||
for America Car | |||
for CHRYSLER | for MERCURY | ||
4593447AA | 557180AD | 4F1Z3B437AA | GG322560X |
4641855AA | 52114390AB | 5L8Z3A428DB | GG362560XA |
4641855AC | 5273546AC | 66-2249 | YL8Z3A427CA |
4641856AA | 66-3108 | 9L8Z3A427C | YL8Z3A427DA |
4641856AC | 66-3109 | 9L8Z3A427D | YL8Z3A427EA |
4882517 | 66-3130 | GG062550XD | YL8Z3A427FA |
4882518 | 66-3131 | GG062560XE | YL8Z3A428CA |
4882519 | 66-3234 | GG312560X | ZZDA2560X |
4882520 | 66-3518 | ZZDA2560XC | ZZDA2560XA |
557130AB | 66-3520 | for RAM | |
66-3552 | 66-3522 | 4885713AD | 55719AB |
66-3553 | 66-3551 | 4881214AD | 66-3404 |
66-3554 | 66-3639 | 55719AA | 66-3740 |
68193908AB | 66-3641 | 68571398AA | |
for FORD | for DODGE | ||
1F0571400 | E6DZ3V428AARM | 4593449AA | 7B0407272A |
1F0571410 | E8DZ3V427AARM | 4641855AE | 7B0407272B |
1F2Z3B436AA | E8DZ3V428AARM | 4641855EE | 7B0407272C |
2F1Z3A428CA | E90Y3V427AARM | 4641856AD | R4881214AE |
2M5Z3B437CA | E90Y3V428AARM | 4641856AF | RL189279AA |
4F1Z3B437BA | F0DZ3V427AARM | 4885710AC | 557180AG |
5M6Z3A428AA | F0DZ3V428AARM | 4885710AE | 5170822AA |
5S4Z3B437AA | F21Z3B437A | 4885710AF | 52114390AA |
66-2005 | F21Z3B437B | 4885710AG | 5273546AD |
66-2008 | F2DZ3B436A | 4885711AC | 5273546AE |
66-2571 | F2DZ3B436B | 4885711AD | 5273546AF |
66-2084 | F2DZ3B437A | 4885712AC | 5273558AB |
66-2086 | F2DZ3B437B | 4885712AE | 5273558AD |
66-2095 | F4DZ3B437A | 4885712AG | 5273558AE |
66-2101 | F57Z3B436BA | 4885712AH | 5273558AF |
66-2143 | F57Z3B437BA | 4885713AC | 4881214AC |
6S4Z3B437BA | F5DZ3A427BA | 4885713AG | 4881214AF |
8S4Z3B437A | F5DZ3A428AS | 4885713AI | 4881214AG |
9L8Z3A427A | F5DZ3B426D | 4885713AJ | 557130AA |
E6DZ3V427AARM | F5DZ3B436D | 5273558AG | 557180AE |
YF1Z3A428RS | F5DZ3B437B | 66-3382 | 557180AF |
YL8Z3A428DA | F5TZ3B436A | 66-3511 | 66-3514 |
YS4Z3B437BB | GG032560XG | 66-3759 | 66-3564 |
YS4Z3B437CB | GG362550X | ||
YF1Z3A427L | |||
for CHEVROLET | for JEEP | ||
257191 | 26062613 | 4578885AA | 5215710AA |
22791460 | 4578885AB | 5215711AB | |
26011961 | 4578885AC | 5215711AB | |
26571730 | 2657189 | 4720380 | 5273438AC |
2657165 | 66-1401 | 4720381 | 5273438AD |
26058932 | 66-1438 | 5012456AB | 5273438AE |
26065719 | 88982496 | 5012457AB | 5273438AG |
for HUMMER | 5066571AA | 66-3220 | |
1571204 | 595716 | 557120AB | 66-3221 |
15886012 | 66-1417 | 557120AC | 66-3298 |
for CADILLAC | 557120AD | 66-3352 | |
88957151 | 66-1416 | 557120AE | 66-3417 |
66-1009 | 66-1430 | 5189278AA | 66-3418 |
66-1415 | 88957150 | 5189279AA | 66-3419 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Condition: | New |
Color: | Black |
Certification: | ISO |
Type: | Drive Shaft |
Application Brand: | Ameican Car |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Are there differences between constant velocity (CV) axles and universal joint (U-joint) axles?
Constant velocity (CV) axles and universal joint (U-joint) axles are two distinct types of axle designs commonly used in vehicles. Here’s an explanation of the differences between CV axles and U-joint axles:
1. Design and Function:
A CV axle consists of a shaft with two constant velocity joints at each end. These joints allow the axle to transmit power to the wheels while accommodating changes in angle and rotational speed. CV axles use a series of bearings and balls to provide smooth power transfer and maintain a constant velocity, hence the name. This design allows for flexibility in various driving conditions, including turning and suspension movement.
On the other hand, U-joint axles use universal joints to transmit power between the transmission or differential and the wheels. U-joints are mechanical connections that allow for angular movement between two shafts. They consist of a cross-shaped yoke and needle bearings that transmit torque while allowing for changes in angle. U-joint axles are commonly found in older vehicles, truck applications, and some off-road vehicles.
2. Articulation and Range of Motion:
CV axles are known for their superior articulation and range of motion. The constant velocity joints in CV axles can operate at higher angles, allowing for greater wheel travel and suspension articulation. This makes CV axles ideal for vehicles with independent suspension systems or those that require more significant wheel movement, such as front-wheel-drive and all-wheel-drive vehicles.
U-joint axles, while capable of transmitting torque, have more limited articulation capabilities compared to CV axles. The design of U-joints restricts the operating angle, making them better suited for applications with lower angles of operation, such as rear-wheel-drive vehicles with solid axles or trucks that typically have less suspension travel.
3. Reliability and Maintenance:
In terms of reliability and maintenance, CV axles are generally considered more durable and require less frequent maintenance compared to U-joint axles. The constant velocity joints in CV axles are enclosed in protective rubber boots, which help to keep dirt, debris, and moisture out. Regular inspection and maintenance of CV axle boots are necessary to prevent damage and ensure longevity. However, if the boots fail and allow contaminants inside, the CV joints can be prone to premature wear and failure.
U-joints, on the other hand, require periodic lubrication to maintain proper operation. They are exposed and require regular greasing to prevent dryness and wear. If not properly maintained, U-joints can develop play, wear out, and eventually fail, leading to driveline vibrations and potential damage to other drivetrain components.
4. Application and Vehicle Type:
The choice between CV axles and U-joint axles depends on the specific application and vehicle type. CV axles are commonly used in front-wheel-drive vehicles, all-wheel-drive vehicles, and some four-wheel-drive vehicles with independent suspension systems. They offer better articulation, smoother operation, and are more suitable for vehicles with higher angles of operation.
U-joint axles are found in various applications, including rear-wheel-drive vehicles, trucks, and some off-road vehicles with solid axles. They are often used in heavy-duty applications due to their robust design and ability to handle higher torque loads.
In summary, the main differences between CV axles and U-joint axles lie in their design, articulation capabilities, reliability, and application. CV axles are known for their superior articulation, smoother operation, and reduced maintenance, making them suitable for front-wheel-drive and all-wheel-drive vehicles. U-joint axles have more limited articulation, require periodic lubrication, and are commonly used in rear-wheel-drive vehicles, trucks, and some off-road applications.
What are the signs of a worn CV joint, and how does it relate to the CV axle?
A CV joint is an essential component of a CV axle, and understanding the signs of a worn CV joint is crucial for identifying potential issues with the CV axle. Here’s an explanation of the signs of a worn CV joint and how it relates to the CV axle:
Signs of a Worn CV Joint:
1. Clicking or Popping Noises: One of the most common signs of a worn CV joint is a clicking or popping noise when turning. This noise is typically heard during low-speed maneuvers, such as when making a sharp turn or navigating a parking lot. The clicking or popping sound is caused by excessive play or looseness in the CV joint due to worn or damaged internal components.
2. Vibrations or Shuddering: A worn CV joint can cause vibrations or shuddering sensations, particularly during acceleration. This may be felt in the steering wheel, floorboard, or even the entire vehicle. The vibrations can occur due to an imbalance caused by a damaged CV joint, resulting in an uneven transfer of power to the wheels.
3. Grease Leakage: CV joints are packed with grease to lubricate the internal components and reduce friction. If a CV joint is worn or damaged, it may cause the grease to leak out. This can be observed as grease stains or splatters around the CV joint or on the inner side of the wheels. Grease leakage is a clear indication of a faulty CV joint that requires attention.
4. Torn CV Boot: The CV joint is protected by a rubber boot that seals in the grease and shields the joint from contaminants. A torn or damaged CV boot exposes the CV joint to dirt, debris, and moisture, leading to accelerated wear and potential damage. Inspecting the CV boots regularly and looking for any signs of tears or cracks is essential in identifying potential CV joint issues.
Relationship between CV Joint and CV Axle:
The CV joint is a critical component of the CV axle assembly. The CV axle, or constant velocity axle, is responsible for transmitting power from the transmission or differential to the wheels while allowing for flexible movement due to its jointed design. The CV joint is located at either end of the CV axle and connects it to the wheel hub assembly.
The CV joint enables the CV axle to transfer power smoothly to the wheels, even when the suspension moves up and down or when the wheels turn during steering. It allows for a constant velocity, hence the name “constant velocity joint.” The CV joint is designed with a ball-bearing or tripod-style mechanism that allows for articulation and rotation while maintaining a consistent speed and torque delivery to the wheels.
However, over time, the CV joint can wear out due to the constant movement, high loads, and exposure to contaminants. When a CV joint becomes worn or damaged, it can affect the overall performance and reliability of the CV axle. If left unaddressed, a worn CV joint can lead to further damage to the CV axle, potentially resulting in complete failure and loss of power transmission to the wheels.
Therefore, it’s crucial to pay attention to the signs of a worn CV joint and address them promptly by inspecting and replacing the affected CV axle or performing necessary repairs. Regular maintenance, including visual inspection of CV boots and listening for any abnormal noises during operation, can help detect CV joint issues early and prevent further damage to the CV axle assembly.
What are the common causes of CV axle failure, and how can I prevent them?
CV axle failure can occur due to various factors, and understanding the common causes can help in preventing premature failures. Here’s an explanation of the common causes of CV axle failure and how you can prevent them:
1. Lack of lubrication:
Insufficient or contaminated lubrication is a common cause of CV axle failure. The CV joints and bearings require proper lubrication to reduce friction and prevent excessive wear. Regular maintenance, such as checking and replacing the CV axle grease as recommended by the vehicle manufacturer, can help prevent this issue. It’s important to use the correct type and amount of grease specified for your vehicle.
2. Torn or damaged CV boots:
The CV boots protect the CV joints from dirt, debris, and moisture, which can cause premature wear and damage. Torn or damaged CV boots expose the CV joints to these harmful elements, leading to accelerated wear and eventual failure. Regular inspection of the CV boots and prompt replacement if any damage is noticed can prevent this issue. Additionally, avoiding driving over rough terrain or obstacles that can damage the boots can help extend the lifespan of the CV axles.
3. Excessive torque or load:
Subjecting the CV axles to excessive torque or load can lead to premature failure. This can occur due to aggressive driving, sudden acceleration, or heavy towing loads. It’s important to operate the vehicle within its recommended limits and avoid putting excessive stress on the drivetrain components. Being mindful of your driving habits and avoiding abrupt maneuvers can help prevent CV axle failure caused by excessive torque or load.
4. Impact damage:
CV axles are susceptible to impact damage, especially when driving over potholes, speed bumps, or hitting curbs. Such impacts can cause fractures, bends, or misalignments in the CV axles, leading to failure over time. To prevent impact damage, it’s essential to drive cautiously and avoid rough road conditions whenever possible. Maintaining proper tire pressure and ensuring that the suspension components are in good condition can also help minimize the risk of impact damage.
5. Lack of maintenance:
Neglecting regular maintenance can contribute to CV axle failure. Routine inspections, including checking for signs of damage, leaks, or excessive wear, can help detect early warning signs of CV axle problems. Timely replacement of worn-out or damaged CV axles and addressing any issues promptly can prevent further damage to the drivetrain. Following the recommended maintenance schedule provided by the vehicle manufacturer is crucial for preventing CV axle failure due to neglect.
6. Environmental factors:
Environmental factors such as extreme temperatures, road salt, and corrosive substances can also contribute to CV axle failure. Exposure to harsh environments can accelerate the deterioration of CV axle components. Regular cleaning and inspection of the CV axles to remove any corrosive substances and protecting them with appropriate coatings or sealants can help mitigate the effects of environmental factors.
By understanding and addressing these common causes, you can take proactive measures to prevent CV axle failure. Regular maintenance, cautious driving, and prompt repairs are key to ensuring the longevity and reliability of the CV axles in your vehicle.
editor by CX 2024-04-24
China factory Top Quality Gjf Drive Shaft Front Axle for Jeep Grand Cherokee 3.7 2006-2010 C-CH032-8h axle car
Product Description
Warm Tips: Please Contact Us To Confirm Your Car Model + Year/ Part OE No. / VIN No.
Product Description
1.We are manufacturer of cv drive shaft,cv axle, cv joint and cv boot, we have more than 20-years experience in producing and selling auto parts.
2.We have strict quality control, the quality of our products is very good.
3.We are professional in different market around the world.
4.The reviews our customers given us are very positive, we have confidence in our products.
5.OEM/ODM is available, meet your requirements well.
6.Large warehouse, huge stocks!!! friendly for those customers who want some quantity.
7.Ship products out very fastly, we have stock.
Product Name | Drive shaft | Material | 42CrMo alloy steel |
Car fitment | Toyota | Warranty | 12 months |
Model | Grand Cherokee 3.7/L 2006-2571 | Place of origin | ZHangZhoug, China |
Certification | SGS/TUV/ISO | MOQ | 4 PCS |
Transportation | Express/ by sea/ by air/ by land | Delivery time | 1-7 days |
OEM/ODM | Yes | Brand | GJF |
Advantages | large stocks/ deliver fastly/ strict quality supervision | Payment | L/C,T/T,western Union,Cash,PayPal |
Sample service | Depends on the situation of stock | Weight | About 9KG |
Detailed Photos
Customer Review
Packaging & Shipping
FAQ
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Car |
Certification: | ASTM, CE, DIN, ISO |
Material: | Alloy |
Samples: |
US$ 60.95/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the environmental considerations of recycling CV axles and related components?
When it comes to recycling CV axles and related components, there are several environmental considerations to take into account. Here’s a detailed explanation of the environmental aspects associated with recycling CV axles:
1. Metal Recycling:
CV axles and related components are typically made of various metals, such as steel and aluminum. Recycling these metals offers significant environmental benefits. Metal recycling reduces the need for extracting and processing raw materials, which helps conserve natural resources and reduces energy consumption. Additionally, recycling metals helps minimize the environmental impact associated with mining and refining processes, including habitat destruction, water pollution, and greenhouse gas emissions.
2. Hazardous Materials:
CV axles may contain hazardous materials or substances that require proper handling and disposal. For example, some axle components may have coatings or finishes that contain heavy metals or other toxic substances. When recycling CV axles, it’s important to follow proper procedures to remove and dispose of any hazardous materials safely. Recycling facilities and scrap metal yards have established protocols to handle hazardous materials to minimize their impact on the environment and human health.
3. Waste Reduction:
Recycling CV axles and related components contributes to waste reduction. Instead of ending up in landfills, these items can be processed and reused, reducing the amount of waste generated. By diverting CV axles from the waste stream, recycling helps conserve landfill space and reduces the potential for environmental contamination. It also reduces the need for new manufacturing, which further conserves resources and reduces associated environmental impacts.
4. Energy Savings:
Recycling CV axles and their components saves energy compared to producing new materials from virgin resources. The recycling process typically requires less energy compared to the extraction, refining, and manufacturing processes involved in producing new metal components. By recycling CV axles, energy consumption and associated greenhouse gas emissions can be reduced, contributing to a lower carbon footprint and mitigating climate change.
5. Proper Disposal:
In cases where CV axles or their components cannot be recycled due to damage or contamination, proper disposal becomes essential. It’s important to adhere to local regulations and guidelines for disposing of these items. Improper disposal can lead to environmental contamination, including soil and water pollution. Working with certified recycling facilities or scrap metal yards ensures that disposal is carried out in an environmentally responsible manner.
6. Extended Product Life Cycle:
Recycling CV axles and related components extends the product life cycle, reducing the need for new production. By reusing materials and components, the environmental impact associated with manufacturing new parts is minimized. Extending the life cycle of CV axles through recycling promotes resource conservation and reduces the overall environmental footprint of the automotive industry.
In summary, recycling CV axles and related components offers several environmental benefits. It conserves natural resources, reduces energy consumption, minimizes hazardous material disposal, promotes waste reduction, and contributes to a lower carbon footprint. Proper recycling and disposal practices play a crucial role in ensuring that these components are handled in an environmentally responsible manner, mitigating their impact on the environment and human health.
What are the signs of a worn CV joint, and how does it relate to the CV axle?
A CV joint is an essential component of a CV axle, and understanding the signs of a worn CV joint is crucial for identifying potential issues with the CV axle. Here’s an explanation of the signs of a worn CV joint and how it relates to the CV axle:
Signs of a Worn CV Joint:
1. Clicking or Popping Noises: One of the most common signs of a worn CV joint is a clicking or popping noise when turning. This noise is typically heard during low-speed maneuvers, such as when making a sharp turn or navigating a parking lot. The clicking or popping sound is caused by excessive play or looseness in the CV joint due to worn or damaged internal components.
2. Vibrations or Shuddering: A worn CV joint can cause vibrations or shuddering sensations, particularly during acceleration. This may be felt in the steering wheel, floorboard, or even the entire vehicle. The vibrations can occur due to an imbalance caused by a damaged CV joint, resulting in an uneven transfer of power to the wheels.
3. Grease Leakage: CV joints are packed with grease to lubricate the internal components and reduce friction. If a CV joint is worn or damaged, it may cause the grease to leak out. This can be observed as grease stains or splatters around the CV joint or on the inner side of the wheels. Grease leakage is a clear indication of a faulty CV joint that requires attention.
4. Torn CV Boot: The CV joint is protected by a rubber boot that seals in the grease and shields the joint from contaminants. A torn or damaged CV boot exposes the CV joint to dirt, debris, and moisture, leading to accelerated wear and potential damage. Inspecting the CV boots regularly and looking for any signs of tears or cracks is essential in identifying potential CV joint issues.
Relationship between CV Joint and CV Axle:
The CV joint is a critical component of the CV axle assembly. The CV axle, or constant velocity axle, is responsible for transmitting power from the transmission or differential to the wheels while allowing for flexible movement due to its jointed design. The CV joint is located at either end of the CV axle and connects it to the wheel hub assembly.
The CV joint enables the CV axle to transfer power smoothly to the wheels, even when the suspension moves up and down or when the wheels turn during steering. It allows for a constant velocity, hence the name “constant velocity joint.” The CV joint is designed with a ball-bearing or tripod-style mechanism that allows for articulation and rotation while maintaining a consistent speed and torque delivery to the wheels.
However, over time, the CV joint can wear out due to the constant movement, high loads, and exposure to contaminants. When a CV joint becomes worn or damaged, it can affect the overall performance and reliability of the CV axle. If left unaddressed, a worn CV joint can lead to further damage to the CV axle, potentially resulting in complete failure and loss of power transmission to the wheels.
Therefore, it’s crucial to pay attention to the signs of a worn CV joint and address them promptly by inspecting and replacing the affected CV axle or performing necessary repairs. Regular maintenance, including visual inspection of CV boots and listening for any abnormal noises during operation, can help detect CV joint issues early and prevent further damage to the CV axle assembly.
What is a CV axle, and what role does it play in a vehicle’s drivetrain?
A CV axle, also known as a constant velocity axle or drive axle, is an essential component in a vehicle’s drivetrain. It plays a crucial role in transferring power from the transmission to the wheels, allowing the vehicle to move forward or backward. Here’s an explanation of what a CV axle is and its role in a vehicle’s drivetrain:
Definition:
A CV axle is a shaft that connects the transmission or differential to the wheels of a vehicle. It is designed to transmit torque from the engine and transmission to the drive wheels, allowing the wheels to rotate at variable speeds while maintaining a constant velocity. The CV axle consists of an inner and outer joint connected by a flexible CV boot, which contains grease and protects the joints from dirt and debris.
Role in the Drivetrain:
The CV axle plays several important roles in a vehicle’s drivetrain:
1. Power Transmission:
One of the primary roles of the CV axle is to transmit power from the engine and transmission to the drive wheels. As the engine generates torque, it is transferred through the transmission to the CV axle, which then delivers the power to the wheels. This allows the vehicle to move forward or backward, depending on the gear selection.
2. Flexibility and Constant Velocity:
The CV axle is designed with flexible joints, known as CV joints, which allow for smooth power transmission even when the wheels are turning at different speeds, such as during turns or when encountering uneven terrain. The CV joints maintain a constant velocity, minimizing vibrations and ensuring a smooth and comfortable ride for the occupants.
3. Suspension and Steering:
The CV axle is an integral part of the suspension and steering system. It connects the wheel hub assembly to the transmission or differential, allowing the wheels to move vertically with the suspension while maintaining power delivery. Additionally, the CV axle contributes to the vehicle’s steering by transmitting torque to the wheels, enabling the driver to control the direction of the vehicle.
4. Absorption of Road Impacts:
The CV axle, along with the suspension system, helps absorb road impacts and shocks, providing a smoother and more controlled ride. The flexibility of the CV joints allows them to compensate for changes in wheel position and accommodate variations in road surface conditions, reducing the impact felt by the vehicle’s occupants.
5. Support and Load Bearing:
The CV axle supports the weight of the vehicle and bears the load transferred from the wheels. It must be designed to handle the forces and stresses encountered during acceleration, deceleration, and cornering. The CV axle’s strength and durability are crucial for maintaining the integrity and performance of the drivetrain.
Overall, the CV axle plays a vital role in a vehicle’s drivetrain by transmitting power, accommodating variable speeds, contributing to suspension and steering, absorbing road impacts, and supporting the vehicle’s weight. It is an essential component for the proper functioning and performance of the vehicle.
editor by CX 2024-04-19
China Good quality Top Quality Gjf Drive Shaft Front Axle for Jeep Grand Cherokee 3.7 2006-2010 C-CH032-8h axle bar
Product Description
Warm Tips: Please Contact Us To Confirm Your Car Model + Year/ Part OE No. / VIN No.
Product Description
1.We are manufacturer of cv drive shaft,cv axle, cv joint and cv boot, we have more than 20-years experience in producing and selling auto parts.
2.We have strict quality control, the quality of our products is very good.
3.We are professional in different market around the world.
4.The reviews our customers given us are very positive, we have confidence in our products.
5.OEM/ODM is available, meet your requirements well.
6.Large warehouse, huge stocks!!! friendly for those customers who want some quantity.
7.Ship products out very fastly, we have stock.
Product Name | Drive shaft | Material | 42CrMo alloy steel |
Car fitment | Toyota | Warranty | 12 months |
Model | Grand Cherokee 3.7/L 2006-2571 | Place of origin | ZHangZhoug, China |
Certification | SGS/TUV/ISO | MOQ | 4 PCS |
Transportation | Express/ by sea/ by air/ by land | Delivery time | 1-7 days |
OEM/ODM | Yes | Brand | GJF |
Advantages | large stocks/ deliver fastly/ strict quality supervision | Payment | L/C,T/T,western Union,Cash,PayPal |
Sample service | Depends on the situation of stock | Weight | About 9KG |
Detailed Photos
Customer Review
Packaging & Shipping
FAQ
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Car |
Certification: | ASTM, CE, DIN, ISO |
Material: | Alloy |
Samples: |
US$ 60.95/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Are there differences between constant velocity (CV) axles and universal joint (U-joint) axles?
Constant velocity (CV) axles and universal joint (U-joint) axles are two distinct types of axle designs commonly used in vehicles. Here’s an explanation of the differences between CV axles and U-joint axles:
1. Design and Function:
A CV axle consists of a shaft with two constant velocity joints at each end. These joints allow the axle to transmit power to the wheels while accommodating changes in angle and rotational speed. CV axles use a series of bearings and balls to provide smooth power transfer and maintain a constant velocity, hence the name. This design allows for flexibility in various driving conditions, including turning and suspension movement.
On the other hand, U-joint axles use universal joints to transmit power between the transmission or differential and the wheels. U-joints are mechanical connections that allow for angular movement between two shafts. They consist of a cross-shaped yoke and needle bearings that transmit torque while allowing for changes in angle. U-joint axles are commonly found in older vehicles, truck applications, and some off-road vehicles.
2. Articulation and Range of Motion:
CV axles are known for their superior articulation and range of motion. The constant velocity joints in CV axles can operate at higher angles, allowing for greater wheel travel and suspension articulation. This makes CV axles ideal for vehicles with independent suspension systems or those that require more significant wheel movement, such as front-wheel-drive and all-wheel-drive vehicles.
U-joint axles, while capable of transmitting torque, have more limited articulation capabilities compared to CV axles. The design of U-joints restricts the operating angle, making them better suited for applications with lower angles of operation, such as rear-wheel-drive vehicles with solid axles or trucks that typically have less suspension travel.
3. Reliability and Maintenance:
In terms of reliability and maintenance, CV axles are generally considered more durable and require less frequent maintenance compared to U-joint axles. The constant velocity joints in CV axles are enclosed in protective rubber boots, which help to keep dirt, debris, and moisture out. Regular inspection and maintenance of CV axle boots are necessary to prevent damage and ensure longevity. However, if the boots fail and allow contaminants inside, the CV joints can be prone to premature wear and failure.
U-joints, on the other hand, require periodic lubrication to maintain proper operation. They are exposed and require regular greasing to prevent dryness and wear. If not properly maintained, U-joints can develop play, wear out, and eventually fail, leading to driveline vibrations and potential damage to other drivetrain components.
4. Application and Vehicle Type:
The choice between CV axles and U-joint axles depends on the specific application and vehicle type. CV axles are commonly used in front-wheel-drive vehicles, all-wheel-drive vehicles, and some four-wheel-drive vehicles with independent suspension systems. They offer better articulation, smoother operation, and are more suitable for vehicles with higher angles of operation.
U-joint axles are found in various applications, including rear-wheel-drive vehicles, trucks, and some off-road vehicles with solid axles. They are often used in heavy-duty applications due to their robust design and ability to handle higher torque loads.
In summary, the main differences between CV axles and U-joint axles lie in their design, articulation capabilities, reliability, and application. CV axles are known for their superior articulation, smoother operation, and reduced maintenance, making them suitable for front-wheel-drive and all-wheel-drive vehicles. U-joint axles have more limited articulation, require periodic lubrication, and are commonly used in rear-wheel-drive vehicles, trucks, and some off-road applications.
How often should CV axles be inspected and replaced as part of routine maintenance?
As part of routine maintenance, it’s important to regularly inspect CV axles to identify any signs of damage, wear, or potential issues. The frequency of inspection and replacement can vary depending on several factors, including the vehicle make and model, driving conditions, and manufacturer recommendations. Here’s a general guideline on how often CV axles should be inspected and replaced:
Inspection:
CV axles should be inspected at regular intervals to detect any early warning signs of damage or wear. A visual inspection can be performed during routine maintenance checks, such as oil changes or tire rotations. It’s recommended to inspect the CV axles at least once a year or every 12,000 to 15,000 miles (19,000 to 24,000 kilometers) as a general guideline.
However, certain driving conditions may require more frequent inspections. For example, if you frequently drive on rough or unpaved roads, or if you engage in off-road activities, more frequent inspections may be necessary due to the increased risk of damage or accelerated wear.
During the inspection, it’s important to check for the following signs of potential CV axle issues:
- Cracked or torn CV boots
- Leaking grease or lubricant
- Clicking, popping, or clunking noises when turning
- Vibrations or shuddering during acceleration
- Excessive play or looseness in the CV joints
If any of these signs are observed, further inspection by a qualified mechanic is recommended to assess the condition of the CV axles and determine if replacement is necessary.
Replacement:
The replacement interval for CV axles can vary depending on factors such as the vehicle’s age, mileage, driving conditions, and the specific recommendations of the vehicle manufacturer. In general, CV axles may need to be replaced between 80,000 to 150,000 miles (129,000 to 241,000 kilometers) or after 5 to 10 years of use.
However, it’s important to note that CV axles can fail prematurely due to various factors such as driving habits, environmental conditions, and maintenance history. If any signs of CV axle damage or failure are detected during the inspection or if there is a sudden and significant change in vehicle performance or handling, immediate replacement may be necessary regardless of the mileage or age of the axles.
It’s recommended to follow the maintenance schedule provided by the vehicle manufacturer for specific guidance on CV axle inspection and replacement intervals. Consulting with a trusted mechanic or automotive professional can also provide valuable insights and recommendations based on their expertise and knowledge of your vehicle.
Regular inspection and timely replacement of worn or damaged CV axles are crucial for maintaining the performance, safety, and reliability of your vehicle’s drivetrain.
Can you recommend reliable brands for purchasing replacement CV axles?
When it comes to purchasing replacement CV axles, it’s important to choose reliable brands that offer quality and durability. While there are several reputable brands available in the market, here are some well-known and trusted brands that specialize in manufacturing CV axles:
- GSP North America: GSP North America is a leading manufacturer and supplier of CV axles, driveshafts, and related components. They offer a wide range of CV axles that are engineered to meet or exceed OEM specifications. GSP North America is known for their high-quality products and has been a trusted brand in the automotive industry for many years.
- Detroit Axle: Detroit Axle is another reputable brand that offers a variety of CV axles for different vehicle makes and models. They provide reliable and affordable replacement axles that are designed to deliver performance and durability. Detroit Axle products are known for their quality and are often recommended by automotive professionals.
- Cardone: Cardone is a well-established brand in the automotive aftermarket industry. They offer a wide range of remanufactured CV axles that undergo rigorous testing and quality control processes. Cardone CV axles are known for their reliability and come with a limited lifetime warranty, providing peace of mind to buyers.
- ACDelco: ACDelco is a trusted brand that offers a diverse range of automotive parts, including CV axles. ACDelco CV axles are designed to meet OEM standards and undergo thorough testing to ensure quality and performance. Their axles are known for their durability and are often used as direct replacements for original equipment.
- Empi: Empi is a brand that specializes in producing CV axles and other drivetrain components for various vehicles, including off-road and performance applications. They offer a wide range of high-quality CV axles that are designed to withstand demanding conditions. Empi is well-regarded among enthusiasts and professionals in the automotive industry.
It’s important to note that the availability of specific brands may vary depending on your location and the vehicle make and model. When purchasing replacement CV axles, it’s recommended to ensure that the axles are compatible with your vehicle and meet the necessary specifications.
Additionally, it’s advisable to consult with a trusted mechanic or automotive professional who can provide guidance and recommendations based on their experience and expertise. They can help you select the most suitable brand and product for your specific vehicle and ensure a reliable replacement of your CV axles.
editor by CX 2024-03-04
China wholesaler Crown Automotive 52853641AD Front Drive Shaft for 11-18 Jeep Grand Cherokee WK2 and Quadra-Trac II with Great quality
Design: SILVERADO, Aveo, Spark, RIO, MARCH, NP300, Versa, SENTRA, JETTA, Vento
Year: 2011-2016, 2011-2013, 2011, 2571, 2012-2016, 2006, 2006-2008, 2007, 2005-2008, 2007-, 2006-2007, 2015-2015, Adult Mountain Bicycle Adult Full Suspension Electric powered Mountain Bicycle OEM ODM 10Ah Lithium Battery E bike 48V 500W 2013-2571, 2016-2017, 2016-, 2008-2016, 2011-2015, 2011, 2002-2005, 2005-2005, 2002-2006, 2011-2571, 2016-2016, 2571-2571, 2000-2002, 2000-2006, 2000-2001, 2012-2013, 2571-2012, 2571-2011, 2012, 1995-2571, 2008-2011, Vintage Stainless Metal City Bike Shaft Travel Bicycle Without Chain Bicicleta 2006-2016, 2008-2571, 2013-, 2016-2016, 2014-2015, 2014-2016
OE NO.: 52853641AD
Vehicle Fitment: Nissan, Kia, VW, Chevrolet
Measurement: L 927.5mm
Content: Aluminum/Alloy
Guarantee: 24 Months
Automobile Make: JEEP-Grand Cherokee
Packaging: Customized Packaging or Kamien Standard Packaging
Packaging Particulars: Vacuum Movie Protection>Kits in seperate bag>10 sets for every carton>standard pallet
Port: ZheJiang , HangZhou, HangZhou
Specification itemvalueOE NO.52853641ADL 927.5mmMaterialAluminum/Alloy12MonthsPlace of OriginChinaJEEP-Grand CherokeePackagingCustomized Packaging or Kamien Normal Packaging Firm Profile FAQ 1. who are we?We are based in ZheJiang , China, start off from 2014,promote to Western Europe(25.00%),North The us(twenty.00%),Japanese Europe(19.00%),South America(fifteen.00%),Central The usa(ten.00%),Oceania(5.00%),Mid East(5.00%),Southeast Asia(00.00%). There are complete about 5-ten people in our workplace.2. how can we assure quality?Usually a pre-manufacturing sample ahead of mass production underground corner cable laying roller CZPT with 3 aluminium wheel Constantly final Inspection before shipment3.what can you buy from us?Brake Pad,Brake Shoe,Brake Disc,Brake Restore Package,Brake Senso4. why should you purchase from us not from other suppliers?We specialize in manufacturing and formulation building of professional vehicle brake pads for above 10 many years. Ideal Cost and high quality can be provided because we often concentrate on cost down by lean management.5. what services can we give?Acknowledged Delivery Terms: FOB,CFR,CIF,EXW,DDP,DDU,Convey Delivery;Accepted Payment Currency:USD,EUR,CNYAccepted Payment Variety: T/T,PayPal,Western UnionLanguage Spoken:English,Chinese,Spanish, 88510 Push shaft Deep grove ball bearings with 10000pcs in inventory French
How to notify if your driveshaft requirements changing
What is the lead to of the unbalanced drive shaft? Unstable U-joint? Your automobile may possibly make clicking noises even though driving. If you can hear it from both sides, it might be time to hand it above to the mechanic. If you’re not certain, go through on to understand a lot more. Luckily, there are many methods to notify if your driveshaft requirements replacing.
unbalanced
An unbalanced driveshaft can be the supply of odd noises and vibrations in your automobile. To resolve this dilemma, you should make contact with a specialist. You can try a amount of issues to repair it, including welding and adjusting the bodyweight. The adhering to are the most common methods. In addition to the approaches above, you can use standardized weights to equilibrium the driveshaft. These standardized weights are connected to the shaft by welders.
An unbalanced drive shaft normally produces lateral vibrations for every revolution. This variety of vibration is generally brought on by a damaged shaft, lacking counterweights, or a foreign object stuck on the push shaft. On the other hand, torsional vibrations occur two times per revolution, and they are brought on by shaft phase shifts. Last but not least, critical pace vibration takes place when the RPM of the travel shaft exceeds its rated capability. If you suspect a driveshaft problem, examine the pursuing:
Manually altering the imbalance of a drive shaft is not the best process. To keep away from the problems of handbook balancing, you can pick to use standardized weights. These weights are fixed on the outer circumference of the generate shaft. The operator can manually placement the bodyweight on the shaft with particular tools, or use a robot. Nevertheless, guide balancers have numerous down sides.
unstable
When the angular velocity of the output shaft is not continuous, it is unstable. The angular velocity of the output shaft is .004 at ph = 29.5 and 1.9 at t = 1.9. The angular velocity of the intermediate shaft is not a difficulty. But when it truly is unstable, the torque utilized to it is too considerably for the equipment. It might be a excellent idea to check the rigidity on the shaft.
An unstable travel shaft can trigger a great deal of sound and mechanical vibration. It can guide to untimely shaft fatigue failure. CZPT reports the influence of shaft vibration on the rotor bearing program. They investigated the influence of flex coupling misalignment on the vibration of the rotor bearing technique. They suppose that the vibrational response has two elements: x and y. Even so, this technique has restricted software in numerous scenarios.
Experimental final results display that the existence of cracks in the output shaft may possibly mask the unbalanced excitation characteristics. For instance, the presence of superharmonic peaks on the spectrum is attribute of cracks. The presence of cracks in the output shaft masks unbalanced excitation qualities that can not be detected in the transient reaction of the enter shaft. Determine 8 shows that the frequency of the rotor increases at crucial velocity and decreases as the shaft passes the normal frequency.
Unreliable
If you happen to be obtaining trouble driving your auto, chances are you’ve operate into an unreliable driveshaft. This variety of drivetrain can lead to the wheels to stick or not turn at all, and also limit the general management of the auto. Whatsoever the purpose, these problems ought to be resolved as soon as achievable. Right here are some signs and symptoms to search for when diagnosing a driveshaft fault. Let us get a closer appear.
The 1st symptom you might observe is an unreliable push shaft. You could truly feel vibrations, or hear noises below the car. Relying on the result in, it could be a broken joint or a broken shaft. The good news is that driveshaft repairs are typically reasonably economical and take significantly less time than a complete drivetrain substitute. If you are not sure what to do, CZPT has a guidebook to changing the U-connector.
One of the most widespread signs of an unreliable driveshaft is clanging and vibration. These sounds can be caused by worn bushings, free U-joints, or destroyed heart bearings. This can cause severe vibration and sound. You can also really feel these vibrations through the steering wheel or the floor. An unreliable driveshaft is a symptom of a even bigger dilemma.
Unreliable U-joints
A car with an unreliable U-joint on the travel shaft can be unsafe. A negative u-joint can avoid the car from driving properly and may possibly even cause you problems. Unreliable u-joints are low cost to change and you should try out receiving areas from top quality manufacturers. Unreliable U-joints can lead to the auto to vibrate in the chassis or gear lever. This is a confident indication that your vehicle has been neglected in servicing.
Changing a U-joint is not a complicated process, but it demands particular equipment and a lot of elbow grease. If you don’t have the proper equipment, or you’re unfamiliar with mechanical terminology, it’s very best to seek the aid of a mechanic. A professional mechanic will be in a position to correctly evaluate the problem and propose an appropriate solution. But if you will not really feel self-assured adequate, you can replace your possess U-connector by subsequent a couple of straightforward measures.
To make sure the vehicle’s driveshaft is not destroyed, examine the U-joint for wear and lubrication. If the U-joint is worn, the metallic areas are most likely to rub towards each and every other, causing wear. The sooner a difficulty is identified, the faster it can be settled. Also, the for a longer time you wait around, the a lot more you get rid of on repairs.
damaged travel shaft
The driveshaft is the portion of the car that connects the wheels. If the driveshaft is broken, the wheels may possibly end turning and the car may possibly gradual down or end shifting completely. It bears the bodyweight of the car by itself as properly as the load on the highway. So even a slight bend or split in the generate shaft can have dire implications. Even a piece of free metal can turn out to be a lethal missile if dropped from a vehicle.
If you hear a screeching sound or growl from your motor vehicle when shifting gears, your driveshaft could be damaged. When this takes place, harm to the u-joint and excessive slack in the travel shaft can consequence. These conditions can even more hurt the drivetrain, which includes the entrance 50 %. You should change the driveshaft as before long as you notice any signs and symptoms. After replacing the driveshaft, you can start off seeking for symptoms of use.
A knocking audio is a indicator of damage to the drive shaft. If you hear this audio whilst driving, it could be owing to worn couplings, broken propshaft bearings, or broken U-joints. In some situations, the knocking noise can even be induced by a ruined U-joint. When this occurs, you could require to change the complete driveshaft, demanding a new a single.
Maintenance charges
The value of repairing a driveshaft differs commonly, relying on the type and result in of the issue. A new driveshaft fees among $300 and $1,three hundred, such as labor. Repairing a damaged driveshaft can cost wherever from $200 to $three hundred, based on the time needed and the type of elements essential. Signs and symptoms of a broken driveshaft consist of unresponsiveness, vibration, chassis sounds and a stationary car.
The first point to think about when estimating the expense of restoring a driveshaft is the type of automobile you have. Some autos have a lot more than a single, and the areas utilized to make them could not be appropriate with other cars. Even if the identical vehicle has two driveshafts, the broken types will value far more. Fortunately, numerous automobile repair shops supply cost-free estimates to mend ruined driveshafts, but be conscious that this kind of function can be difficult and pricey.